
www.anl.gov

ALCF Data and Learning Frameworks
J. Taylor Childers
ALCF

Argonne Leadership Computing Facility!2

Data & Learning at the ALCF

Jin LiXiao-Yong Jin

Francois Tessier

Murat Keceli Elise Jennings Alvaro Vazquez
Mayagoitia

Tom Uram

Taylor Childers

Venkat VishwanathWilliam Scullin

Prasanna
Balaprakash

Ganesh Sivaraman Richard Zamora

Adrian Pope Misha Salim

Argonne Leadership Computing Facility!3

• Deep Learning:
- Tensorflow+Keras
- Horovod
- Cray ML Plugin for Deep Learning

• Data Handling:
- Spark
- Singularity
- Globus
- RAM-disk (/tmp)
- SSDs (Rick’s talk)

Data & Learning Frameworks for Theta

Argonne Leadership Computing Facility!4

Deep Learning on Theta
• Support at ALCF has been focused on Tensorflow with the optional Keras API
• Intel offers an optimized Tensorflow wheel
• Using Horovod for scaling across nodes using data parallelism

• We have two supported Tensorflow installs:
- Conda environment using Intel Tensorflow Wheel
- Cray optimized ML plugin

• Both options have methods for running data-parallel training on Theta
- Data-parallel means each node has a full ML model and trains on mini-batches of input data
- After gradients are calculated locally, an ALLREDUCE is performed to compute a global gradient

and synchronize the model parameters across nodes

https://software.intel.com/en-us/articles/intel-optimized-tensorflow-installation-guide
https://github.com/uber/horovod

Argonne Leadership Computing Facility!5

Tensorflow Installations: Conda Environment
• A Conda environment is available and can be loaded using

the module load command
- module load miniconda-3.6/conda-4.4.10 (python 3.6)
- module load miniconda-2.7/conda-4.4.10 (python 2.7)
- Can query the local packages installed using conda list
- Uses Intel optimized backends such as numpy and scipy to provide better

performance
- Tensorflow installed via Intel Wheel
- Documented here: https://www.alcf.anl.gov/user-guides/conda

• Use it this way:
#!/bin/bash
#COBALT -n <num-nodes>
#COBALT -t <wall-time>
#COBALT -q <queue>
#COBALT -A <project>

module load miniconda-3.6/conda-4.4.10

aprun -n <num-ranks> -N <mpi-ranks-per-node> python script.py

https://www.alcf.anl.gov/user-guides/conda

Argonne Leadership Computing Facility!6

Tensorflow Installations: Conda Environment
• If you need to install custom modules you can clone the

installation
• Be aware that the Conda installations have the Cray MPI libs

copied into their ./lib areas to ensure compatibility with
Theta

• This will clone the installation to your own area.

• Then you can install other python modules using
-conda install

-pip install

• Removing the --clone would provide you with a clean
environment with nothing installed.

conda create -p /path/to/new/env --clone /soft/datascience/conda/miniconda3/4.4.10

source activate /path/to/new/env

Argonne Leadership Computing Facility!7

Tensorflow Installations: Conda Environment
• Using this in a submit script

#!/bin/bash
#COBALT -n <num-nodes>
#COBALT -t <wall-time>
#COBALT -q <queue>
#COBALT -A <project>

module load miniconda-3.6/conda-4.4.10
source activate /path/to/new/env

aprun -n <num-ranks> -N <mpi-ranks-per-node> python script.py

Argonne Leadership Computing Facility!8

Tensorflow Installations: Cray Plugin
• More details in Peter Mendygral's Slides
• Communication plugin with Python and C APIs
• Optimized for TensorFlow but also portable to other frameworks

- Callable from C/C++ source
- Called from Python if data stored in NumPy arrays or Tensors

• Like Horovod does not require modification to TensorFlow source
- User modifies training script

• Uses custom ALLREDUCE specifically optimized for DL workloads
- Optimized for Cray Aries interconnect and IB for Cray clusters

• Tunable through API and environment variables
• Supports multiple gradient aggregations at once with thread teams

- Useful for Generative Adversarial Networks (GAN), for example

• Example submit scripts here:
/lus/theta-fs0/projects/SDL_Workshop/mendygra/cpe_plugin_py2.batch
/lus/theta-fs0/projects/SDL_Workshop/mendygra/cpe_plugin_py3.batch

https://www.alcf.anl.gov/files/mendygral_ALCF_ScalingDL.pdf

Argonne Leadership Computing Facility!9

Tensorflow Installations: Cray Plugin
• The Cray Python environment can be loaded via
• Environment setup for Python 2.7:

• Environment setup for Python 3.6
•

module load cray-python
export PYTHONUSERBASE=/lus/theta-fs0/projects/SDL_Workshop/mendygra/pylibs
module load /lus/theta-fs0/projects/SDL_Workshop/mendygra/tmp_inst/modulefiles/craype-ml-plugin-py2/1.1.0

module load cray-python/3.6.1.1
export PYTHONUSERBASE=/lus/theta-fs0/projects/SDL_Workshop/mendygra/pylibs
module load /lus/theta-fs0/projects/SDL_Workshop/mendygra/tmp_inst/modulefiles/craype-ml-plugin-py3/1.1.0

Argonne Leadership Computing Facility!10

 Environment Customizations for Theta

• Submit script should include the environment variables below
• Some insight into these settings is here: https://www.tensorflow.org/

performance/performance_guide

#!/bin/bash
#COBALT -n <num-nodes>
#COBALT -t <wall-time>
#COBALT -q <queue>
#COBALT -A <project>

load your environment
module load ...

from Peter Mendygral
Specifies the number of threads to use.
OMP_NUM_THREADS=62
milliseconds a thread waits after completing
the execution of a parallel region, before sleeping.
KMP_BLOCKTIME=0 # 30 sometimes good too
Enables the run-time library to bind threads to physical processing units.
KMP_AFFINITY=“granularity=fine,compact,1,0”

aprun -n <num-ranks> -N <mpi-ranks-per-node> python script.py

https://www.tensorflow.org/performance/performance_guide
https://www.tensorflow.org/performance/performance_guide

Argonne Leadership Computing Facility!11

 Environment Customizations for Theta
• In general, you can play with the Tensorflow

configuration for threading to optimize performance
- intra_op_parallelism_threads: Setting this equal to the

number of physical cores is recommended. Setting the value to 0,
which is the default and will result in the value being set to the
number of logical cores, is an option to try for some architectures.
This value and OMP_NUM_THREADS should be equal.

- inter_op_parallelism_threads: Setting this equal to the
number of sockets is recommended. Setting the value to 0, which is
the default, results in the value being set to the number of logical
cores.

• There is an example TF CNN implementation which
implements these via command line flags here:
- https://github.com/tensorflow/benchmarks/blob/

mkl_experiment/scripts/tf_cnn_benchmarks/
tf_cnn_benchmarks.py

https://github.com/tensorflow/benchmarks/blob/mkl_experiment/scripts/tf_cnn_benchmarks/tf_cnn_benchmarks.py
https://github.com/tensorflow/benchmarks/blob/mkl_experiment/scripts/tf_cnn_benchmarks/tf_cnn_benchmarks.py
https://github.com/tensorflow/benchmarks/blob/mkl_experiment/scripts/tf_cnn_benchmarks/tf_cnn_benchmarks.py

Argonne Leadership Computing Facility

• In general, you can play with the Tensorflow
configuration for threading
- intra_op_parallelism_threads: Setting this equal to the

number of physical cores is recommended. Setting the value to 0,
which is the default and will result in the value being set to the
number of logical cores, is an option to try for some architectures.
This value and OMP_NUM_THREADS should be equal.

- inter_op_parallelism_threads: Setting this equal to the
number of sockets is recommended. Setting the value to 0, which is
the default, results in the value being set to the number of logical
cores.

• There is an example TF CNN implementation which
implements these via command line flags here:
- https://github.com/tensorflow/benchmarks/blob/

mkl_experiment/scripts/tf_cnn_benchmarks/
tf_cnn_benchmarks.py

!12

 Environment Customizations for Theta
def create_config_proto():
 config = tf.ConfigProto()
 config.allow_soft_placement = True
 config.intra_op_parallelism_threads = FLAGS.num_intra_threads
 config.inter_op_parallelism_threads = FLAGS.num_inter_threads
 config.gpu_options.force_gpu_compatible = FLAGS.force_gpu_compatible
 #config.graph_options.rewrite_options.disable_model_pruning = True
 return config

self.server = tf.train.Server(self.cluster, job_name=self.job_name,
 task_index=self.task_index,
 config=create_config_proto(),
 protocol=FLAGS.server_protocol)

https://github.com/tensorflow/benchmarks/blob/mkl_experiment/scripts/tf_cnn_benchmarks/tf_cnn_benchmarks.py
https://github.com/tensorflow/benchmarks/blob/mkl_experiment/scripts/tf_cnn_benchmarks/tf_cnn_benchmarks.py
https://github.com/tensorflow/benchmarks/blob/mkl_experiment/scripts/tf_cnn_benchmarks/tf_cnn_benchmarks.py

Argonne Leadership Computing Facility

• Use Lustre striping to improve filesystem performance
during training

• First create a directory that will be striped across
multiple Lustre sources

• Then copy the input files into this directory

!13

 Filesystem Customizations for Theta

lfs setstripe –c 16 [samples directory]

cp [dataset files] [samples directory]

Argonne Leadership Computing Facility!14

Scaling Tensorflow on Theta with Horovod
• https://github.com/uber/horovod
• Horovod is part of the Conda environment when setup
• Horovod is a simple wrapper using MPI to synchronize gradients prior to

updating model parameters
• It has support for native Tensorflow or Keras with Tensorflow as the

backend

Argonne Leadership Computing Facility!15

Scaling Tensorflow on Theta with Horovod

• Easiest implementation using Keras + Tensorflow
• For Keras one can simply add the code above

import keras
...
import horovod.keras as hvd
Horovod: initialize Horovod.
hvd.init()
#... data loading, etc.
create model
model = Sequential()
model.add(Conv2D(32, kernel_size=(3, 3),activation='relu',input_shape=input_shape))
...
create optimizer
opt = keras.optimizers.Adadelta()
wrap with Horovod Distributed Optimizer
opt = hvd.DistributedOptimizer(opt)
pass horovod optimizer instead of keras optimizer to model compilation step
model.compile(loss=keras.losses.categorical_crossentropy,
 optimizer=opt,
 metrics=['accuracy'])
model.fit(x_train, y_train,
 batch_size=batch_size,
 callbacks=callbacks,
 epochs=epochs,
 verbose=1,
 validation_data=(x_test, y_test))

https://github.com/uber/horovod/blob/master/examples/keras_mnist.py

Argonne Leadership Computing Facility!16

Scaling Tensorflow on Theta with Horovod
• In the case of Keras, one can set the Tensorflow threading options in this

way.
import keras,os
import tensorflow as tf
config = tf.ConfigProto(intra_op_parallelism_threads=os.environ(‘OMP_NUM_THREADS’), \
 inter_op_parallelism_threads=2, \
 allow_soft_placement=True, \
 device_count = {'CPU': args.jobs})
session = tf.Session(config=config)
keras.backend.set_session(session)

Argonne Leadership Computing Facility!17

Scaling Tensorflow on Theta with Horovod
• Horovod can also be added to a native Tensorflow training script
• https://github.com/uber/horovod/blob/master/examples/tensorflow_mnist.py
• This requires a few more edits

import tensorflow as tf
import horovod.tensorflow as hvd
. . . helper functions . . .
def main(_):
 # Horovod: initialize Horovod.
 hvd.init()
 # Download and load MNIST dataset.
 mnist = learn.datasets.mnist.read_data_sets('MNIST-data-%d' % hvd.rank())
 # . . . build model . . .
 # Horovod: adjust learning rate based on number of GPUs.
 opt = tf.train.RMSPropOptimizer(0.001 * hvd.size())
 # Horovod: add Horovod Distributed Optimizer.
 opt = hvd.DistributedOptimizer(opt)
 # . . . build train_op . . .

https://github.com/uber/horovod/blob/master/examples/tensorflow_mnist.py

Argonne Leadership Computing Facility!18

Scaling Tensorflow on Theta with Horovod
• Horovod can also be added to a native Tensorflow training script
• https://github.com/uber/horovod/blob/master/examples/tensorflow_mnist.py
• This requires a few more edits

 hooks = [
 # Horovod: BroadcastGlobalVariablesHook broadcasts initial variable states
 # from rank 0 to all other processes. This is necessary to ensure consistent
 # initialization of all workers when training is started with random weights
 # or restored from a checkpoint.
 hvd.BroadcastGlobalVariablesHook(0),

 # Horovod: adjust number of steps based on number of nodes.
 tf.train.StopAtStepHook(last_step=20000 // hvd.size()),

 tf.train.LoggingTensorHook(tensors={'step': global_step, 'loss': loss},
 every_n_iter=10),
]

 # Horovod: save checkpoints only on worker 0 to prevent other workers from
 # corrupting them.
 checkpoint_dir = './checkpoints' if hvd.rank() == 0 else None

 # The MonitoredTrainingSession takes care of session initialization,
 # restoring from a checkpoint, saving to a checkpoint, and closing when done
 # or an error occurs.
 with tf.train.MonitoredTrainingSession(checkpoint_dir=checkpoint_dir,
 hooks=hooks,
 config=config) as mon_sess:
 while not mon_sess.should_stop():
 # Run a training step synchronously.
 image_, label_ = mnist.train.next_batch(100)
 mon_sess.run(train_op, feed_dict={image: image_, label: label_})

https://github.com/uber/horovod/blob/master/examples/tensorflow_mnist.py

Argonne Leadership Computing Facility!19

Cray Plugin Example
• After module load setup from Slide 9
• See some example scripts:

• Import the Cray plugin in your code:

less $CRAYPE_ML_PLUGIN_BASEDIR/examples/tf_mnist/mnist.py

import tensorflow as tf
load Cray plugin
import ml_comm as mc
...

Argonne Leadership Computing Facility!20

Cray Plugin Example
• Must tell the Cray plugin the number of trainable parameters in your model for memory alloc
• This is the initialization step

• This is the finalization step

CRAY ADDED
if FLAGS.enable_ml_comm:
 # initialize the Cray PE ML Plugin (assume 20M variables max)
 mc.init(1, 1, 20*1024*1024, "tensorflow")
 # config the thread team (correcting the number of epochs for the effective batch size))
 FLAGS.train_epochs = int(FLAGS.train_epochs / mc.get_nranks())
 max_steps = int(math.ceil(FLAGS.train_epochs *
 (_NUM_IMAGES['train'] + _NUM_IMAGES['validation']) / FLAGS.batch_size))
 mc.config_team(0, 0, 100, max_steps, 2, 200)
 # give each rank its own directory to save in
 FLAGS.model_dir = FLAGS.model_dir + ‘/rank' + str(mc.get_rank())

CRAY ADDED
if FLAGS.enable_ml_comm:
 mc.finalize()
END CRAY ADDED

Argonne Leadership Computing Facility

• Update Optimizer to synchronize gradients and apply

!21

Cray Plugin Example

CRAY ADDED
if FLAGS.enable_ml_comm:
 # we need to split out the minimize call below so we can modify gradients
 grads_and_vars = optimizer.compute_gradients(loss)
 grads = mc.gradients([gv[0] for gv in grads_and_vars], 0)
 gs_and_vs = [(g,v) for (_,v), g in zip(grads_and_vars, grads)]
 train_op = optimizer.apply_gradients(gs_and_vs,
 global_step=tf.train.get_or_create_global_step())
END CRAY ADDED

Argonne Leadership Computing Facility!22

Cray Plugin Example
• Additional initialization:

CRAY ADDED
since this script uses a monitored session, we need to create a hook to initialize
variables after the session is generated
class BcastTensors(tf.train.SessionRunHook):

 def __init__(self):
 self.bcast = None

 def begin(self):
 if not self.bcast:
 new_vars = mc.broadcast(tf.trainable_variables(),0)
 self.bcast = tf.group(*[tf.assign(v,new_vars[k]) for k,v in enumerate(tf.trainable_variables())])

 def after_create_session(self, session, coord):
 session.run(self.bcast)

 if FLAGS.ml_comm_validate_init:
 py_all_vars = [session.run(v) for v in tf.trainable_variables()]
 if (mc.check_buffers_match(py_all_vars,1) != 0):
 print("ERROR: not all processes have the same initial model!")
 else:
 print("Initial model is consistent on all ranks")

END CRAY ADDED

Argonne Leadership Computing Facility!23

Cray Plugin Example
• Additional initialization:

CRAY ADDED
since this script uses a monitored session, we need to create a hook to initialize
variables after the session is generated
class BcastTensors(tf.train.SessionRunHook):

 def __init__(self):
 self.bcast = None

 def begin(self):
 if not self.bcast:
 new_vars = mc.broadcast(tf.trainable_variables(),0)
 self.bcast = tf.group(*[tf.assign(v,new_vars[k]) for k,v in enumerate(tf.trainable_variables())])

 def after_create_session(self, session, coord):
 session.run(self.bcast)

 if FLAGS.ml_comm_validate_init:
 py_all_vars = [session.run(v) for v in tf.trainable_variables()]
 if (mc.check_buffers_match(py_all_vars,1) != 0):
 print("ERROR: not all processes have the same initial model!")
 else:
 print("Initial model is consistent on all ranks")

END CRAY ADDED

CRAY ADDED
add to our list of session hooks for the initial bcast of the model
sess_hooks = []
if FLAGS.enable_ml_comm:
 sess_hooks = [BcastTensors()]
END CRAY ADDED
...
tf.estimator.EstimatorSpec(
 mode=mode,
 predictions=predictions,
 loss=loss,
 train_op=train_op,
 training_hooks=sess_hooks,
 eval_metric_ops=metrics)

Argonne Leadership Computing Facility!24

Cray Vs. Horovod Performance
• Scaling results comparing

Horovod+TF in Conda vs  
Cray ML Plugin

• Images processed per second

• Left uses local mini-batch size
of 32

• Right uses local mini-batch
size of 512

• Cray plugin outperforms
Horovod in the high-
communication region.

Argonne Leadership Computing Facility

• A nice example script is located here which abstracts all the features described
and more:

• Example batch script using this is here:

!25

Some Horovod Performance Measures
• On the Left

• Testing with Horovod+TF using
data parallel training

• Scaled data-parallel training for
two Candle benchmarks to 512
nodes on Theta

• On the Right

• Alexnet training example using
different numbers of processes
per node (ppn) and total node
count

• Inter/Intra Op Thread settings
varied as well.

• Shows near linear strong scaling

/projects/datascience/elise/helper_scripts/tf_wrapper.py

/projects/datascience/elise/TF_alexnet.sh

Argonne Leadership Computing Facility!26

Monitoring With Tensorboard
• You can monitor training variables using Tensorboard

on Theta

• After it starts you will see something like this

• You can connect by port forwarding when you login to
Theta:

• On your laptop, in Firefox, you can set the browser to
use a socks5 proxy ‘localhost’ with the same port
number you used above

• Then enter thetalogin5:6006 as the url

module load miniconda-3.6/conda-4.4.10
tensorboard --logdir </path/to/checkpointdir>

TensorBoard 1.6.0 at http://thetalogin5:6006
(Press CTRL+C to quit)

ssh -D <some-high-port-number> theta.alcf.anl.gov

http://theta.alcf.anl.gov

Argonne Leadership Computing Facility

Running Spark on Theta

!27

• What is Spark?
– Method for data-parallel applications to scale easily on HPCs

• Installed on Theta, can run your Spark-enabled applications using this recipe:

• Still working on documentation on website and standardizing the installation on Theta
• Currently benchmarking to understand proper configurations and use-cases

/soft/datascience/Spark_Job/submit-spark.sh -A <project> -t 10 \
-n <wall-time> -q <queue> run-example SparkPi

Argonne Leadership Computing Facility

• We use Singularity due to the rights escalation issue in Docker
• https://www.alcf.anl.gov/user-guides/singularity
• Available on Theta login nodes for downloading images
• Images can be built using

• Generally the Singularity build command requires ‘sudo’ rights to run except
in these cases where you have an image already on a HUB

• The following instructions show how to build an Singularity container on the
Singularity Hub

Containers on Theta with Singularity

!28

singularity build myubuntu.img docker://ubuntu
singularity build myubuntu.img shub://singularityhub/ubuntu
singularity build myubuntu.img docker://jtchilders/mpitest:latest

http://singularity.lbl.gov/

https://www.alcf.anl.gov/user-guides/singularity
docker://ubuntu
shub://singularityhub/ubuntu
docker://jtchilders/mpitest:latest

Argonne Leadership Computing Facility

1. Create SingularityFile recipe in github
2. Link repo to Singularity Hub
3. Wait for build
4. Build on Theta
5. Run on Theta

Overview of the Workflow in Five Easy Steps!

!29

Container
pi

MPICH

Container
pi

MPICH

Cray MPICH

Run on Theta
Built on Singularity Hub

Argonne Leadership Computing Facility

• Building containers from Scratch
• Create a Singularity recipe file

Singularity Usage on Theta

!30

Argonne Leadership Computing Facility!31

Source of base image

Argonne Leadership Computing Facility!32

Source of base image

Make working directory.
Copy files from into image.

During the ‘setup’ phase,
the image does not yet exist
and is still on the host
filesystem at the path
SINGULARITY_ROOTFS
This creates app directory
at ‘/myapp’ in the image

Argonne Leadership Computing Facility!33

Source of base image

Make working directory.
Copy files from into image.

Commands to install my
image with the application.

I n s t a l l v i a ‘ y u m ’ a n y
packages needed to build
application inside the
container. Build MPICH by
h a n d , t h e n b u i l d s
application.

Argonne Leadership Computing Facility!34

Source of base image

Make working directory.
Copy files from into image.

Commands to install my
image with the application.

Specify the executable to
run with container is called

Typically containers are
built to run one executable.

singularity run myapp.img

Argonne Leadership Computing Facility!35

pi.c source is here: https://
www.alcf.anl.gov/user-guides/example-
program-and-makefile-bgq
It’s a straightforward MPI application that
calculates pi with MPI_REDUCE.

https://www.alcf.anl.gov/user-guides/example-program-and-makefile-bgq
https://www.alcf.anl.gov/user-guides/example-program-and-makefile-bgq
https://www.alcf.anl.gov/user-guides/example-program-and-makefile-bgq

Argonne Leadership Computing Facility

• Notice manual installation of MPICH into container.
• The configure command disables the setting of RPATH during linking of the shared MPI libraries.
• After installation of MPICH, PATH & LD_LIBRARY_PATH are set to include MPICH
• Then pi is built
• IMPORTANT: ensure it dynamically (not statically) links against MPICH

!36

wget http://www.mpich.org/static/downloads/3.2.1/mpich-3.2.1.tar.gz
tar xf mpich-3.2.1.tar.gz
cd mpich-3.2.1
./configure --prefix=$PWD/install --disable-wrapper-rpath
make -j 4 install
export PATH=$PATH:$PWD/install/bin
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$PWD/install/lib
cd ..
mpicc -o pi -fPIC pi.c

Argonne Leadership Computing Facility

• https://github.com/jtchilders/singularity_mpi_test_recipe
• Need to add recipe file inside with filename ‘Singularity’
• Add file pi.c from previous link

Create new Github Repository

!37

https://github.com/jtchilders/singularity_mpi_test_recipe

Argonne Leadership Computing Facility

• Goto: https://www.singularity-hub.org/login/
• Authenticate using your Github account
• You can then add github repositories to your

container collection.
• Click the big red button
•

Create Singularity Hub Account

!38

https://www.singularity-hub.org/login/

Argonne Leadership Computing Facility

• Goto: https://www.singularity-hub.org/login/
• Authenticate using your Github account
• You can then add github repositories to your

container collection.
• Click the big red button
• Select your new repository and click the big red

button
•

Create Singularity Hub Account

!39

https://www.singularity-hub.org/login/

Argonne Leadership Computing Facility

• Goto: https://www.singularity-hub.org/login/
• Authenticate using your Github account
• You can then add github repositories to your

container collection.
• Click the big red button
• Select your new repository and click the big red

button
• Now you have your recipe listed and

Singularity Hub will begin recursively searching
the repo for any files named ‘Singularity’ and
building those recipes

• Our example only has 1 recipe
• Click on the recipe

Create Singularity Hub Account

!40

https://www.singularity-hub.org/login/

Argonne Leadership Computing Facility

• Goto: https://www.singularity-hub.org/login/
• Authenticate using your Github account
• You can then add github repositories to your

container collection.
• Click the big red button
• Select your new repository and click the big red

button
• Now you have your recipe listed and

Singularity Hub will begin recursively searching
the repo for any files named ‘Singularity’ and
building those recipes

• Our example only has 1 recipe
• Click on the recipe to see it’s build status
• Error messages during build can be seen by

clicking the big red button
• Otherwise it will list the container as

COMPLETE

Create Singularity Hub Account

!41

https://www.singularity-hub.org/login/

Argonne Leadership Computing Facility

• Run the following on Theta to download and create an image:

Retrieving Container

!42

singularity build myapp.img shub://jchilders/singularity_mpi_test_recipe

Running Singularity Container on Theta
qsub submit.sh

Argonne Leadership Computing Facility

• Copying container to Theta (my image was 225MB)
• Run the following: qsub submit.sh
#!/bin/bash
#COBALT -t 30
#COBALT -q debug-cache-quad
#COBALT -n 2
#COBALT -A EnergyFEC_3

app build with GNU not Intel
module swap PrgEnv-intel PrgEnv-gnu
Use Cray's Application Binary Independent MPI build
module swap cray-mpich cray-mpich-abi

prints to log file the list of modules loaded (just a check)
module list

include CRAY_LD_LIBRARY_PATH in to the system library path
export LD_LIBRARY_PATH=$CRAY_LD_LIBRARY_PATH:$LD_LIBRARY_PATH
also need this additional library
export LD_LIBRARY_PATH=/opt/cray/wlm_detect/1.2.1-6.0.4.0_22.1__gd26a3dc.ari/lib64/:$LD_LIBRARY_PATH
in order to pass environment variables to a Singularity container create the variable
with the SINGULARITYENV_ prefix
export SINGULARITYENV_LD_LIBRARY_PATH=$LD_LIBRARY_PATH
print to log file for debug
echo $SINGULARITYENV_LD_LIBRARY_PATH

this simply runs the command 'ldd /myapp/pi' inside the container and should show that
the app is running agains the host machines Cray libmpi.so not the one inside the container
aprun -n 1 -N 1 singularity exec -B /opt:/opt:ro -B /var/opt:/var/opt:ro mpitest.img ldd /myapp/pi
run my contianer like an application, which will run '/myapp/pi'
aprun -n 8 -N 4 singularity run -B /opt:/opt:ro -B /var/opt:/var/opt:ro mpitest.img

Running Singularity Container on Theta

!43

Standard Cobalt parameters

Argonne Leadership Computing Facility

• Copying container to Theta (my image was 225MB)
• Run the following: qsub submit.sh
#!/bin/bash
#COBALT -t 30
#COBALT -q debug-cache-quad
#COBALT -n 2
#COBALT -A EnergyFEC_3

app build with GNU not Intel
module swap PrgEnv-intel PrgEnv-gnu
Use Cray's Application Binary Independent MPI build
module swap cray-mpich cray-mpich-abi

prints to log file the list of modules loaded (just a check)
module list

include CRAY_LD_LIBRARY_PATH in to the system library path
export LD_LIBRARY_PATH=$CRAY_LD_LIBRARY_PATH:$LD_LIBRARY_PATH
also need this additional library
export LD_LIBRARY_PATH=/opt/cray/wlm_detect/1.2.1-6.0.4.0_22.1__gd26a3dc.ari/lib64/:$LD_LIBRARY_PATH
in order to pass environment variables to a Singularity container create the variable
with the SINGULARITYENV_ prefix
export SINGULARITYENV_LD_LIBRARY_PATH=$LD_LIBRARY_PATH
print to log file for debug
echo $SINGULARITYENV_LD_LIBRARY_PATH

this simply runs the command 'ldd /myapp/pi' inside the container and should show that
the app is running agains the host machines Cray libmpi.so not the one inside the container
aprun -n 1 -N 1 singularity exec -B /opt:/opt:ro -B /var/opt:/var/opt:ro mpitest.img ldd /myapp/pi
run my contianer like an application, which will run '/myapp/pi'
aprun -n 8 -N 4 singularity run -B /opt:/opt:ro -B /var/opt:/var/opt:ro mpitest.img

Running Singularity Container on Theta

!44

Swap module for app

Argonne Leadership Computing Facility

• Copying container to Theta (my image was 225MB)
• Run the following: qsub submit.sh

Running Singularity Container on Theta

!45

#!/bin/bash
#COBALT -t 30
#COBALT -q debug-cache-quad
#COBALT -n 2
#COBALT -A EnergyFEC_3

app build with GNU not Intel
module swap PrgEnv-intel PrgEnv-gnu
Use Cray's Application Binary Independent MPI build
module swap cray-mpich cray-mpich-abi

prints to log file the list of modules loaded (just a check)
module list

include CRAY_LD_LIBRARY_PATH in to the system library path
export LD_LIBRARY_PATH=$CRAY_LD_LIBRARY_PATH:$LD_LIBRARY_PATH
also need this additional library
export LD_LIBRARY_PATH=/opt/cray/wlm_detect/1.2.1-6.0.4.0_22.1__gd26a3dc.ari/lib64/:$LD_LIBRARY_PATH
in order to pass environment variables to a Singularity container create the variable
with the SINGULARITYENV_ prefix
export SINGULARITYENV_LD_LIBRARY_PATH=$LD_LIBRARY_PATH
print to log file for debug
echo $SINGULARITYENV_LD_LIBRARY_PATH

this simply runs the command 'ldd /myapp/pi' inside the container and should show that
the app is running agains the host machines Cray libmpi.so not the one inside the container
aprun -n 1 -N 1 singularity exec -B /opt:/opt:ro -B /var/opt:/var/opt:ro mpitest.img ldd /myapp/pi
run my contianer like an application, which will run '/myapp/pi'
aprun -n 8 -N 4 singularity run -B /opt:/opt:ro -B /var/opt:/var/opt:ro mpitest.img

Module changes updated CRAY_LD_LIBRARY_PATH,
append it to local LD_LIBRARY_PATH
Also need to add addition library path.

Argonne Leadership Computing Facility

• Copying container to Theta (my image was 225MB)
• Run the following: qsub submit.sh

Running Singularity Container on Theta

!46

#!/bin/bash
#COBALT -t 30
#COBALT -q debug-cache-quad
#COBALT -n 2
#COBALT -A EnergyFEC_3

app build with GNU not Intel
module swap PrgEnv-intel PrgEnv-gnu
Use Cray's Application Binary Independent MPI build
module swap cray-mpich cray-mpich-abi

prints to log file the list of modules loaded (just a check)
module list

include CRAY_LD_LIBRARY_PATH in to the system library path
export LD_LIBRARY_PATH=$CRAY_LD_LIBRARY_PATH:$LD_LIBRARY_PATH
also need this additional library
export LD_LIBRARY_PATH=/opt/cray/wlm_detect/1.2.1-6.0.4.0_22.1__gd26a3dc.ari/lib64/:$LD_LIBRARY_PATH
in order to pass environment variables to a Singularity container create the variable
with the SINGULARITYENV_ prefix
export SINGULARITYENV_LD_LIBRARY_PATH=$LD_LIBRARY_PATH
print to log file for debug
echo $SINGULARITYENV_LD_LIBRARY_PATH

this simply runs the command 'ldd /myapp/pi' inside the container and should show that
the app is running agains the host machines Cray libmpi.so not the one inside the container
aprun -n 1 -N 1 singularity exec -B /opt:/opt:ro -B /var/opt:/var/opt:ro mpitest.img ldd /myapp/pi
run my contianer like an application, which will run '/myapp/pi'
aprun -n 8 -N 4 singularity run -B /opt:/opt:ro -B /var/opt:/var/opt:ro mpitest.img

Run application inside singularity, aprun handles the MPI

Argonne Leadership Computing Facility

• Copying container to Theta (my image was 225MB)
• Run the following: qsub submit.sh

Running Singularity Container on Theta

!47

#!/bin/bash
#COBALT -t 30
#COBALT -q debug-cache-quad
#COBALT -n 2
#COBALT -A EnergyFEC_3

app build with GNU not Intel
module swap PrgEnv-intel PrgEnv-gnu
Use Cray's Application Binary Independent MPI build
module swap cray-mpich cray-mpich-abi

prints to log file the list of modules loaded (just a check)
module list

include CRAY_LD_LIBRARY_PATH in to the system library path
export LD_LIBRARY_PATH=$CRAY_LD_LIBRARY_PATH:$LD_LIBRARY_PATH
also need this additional library
export LD_LIBRARY_PATH=/opt/cray/wlm_detect/1.2.1-6.0.4.0_22.1__gd26a3dc.ari/lib64/:$LD_LIBRARY_PATH
in order to pass environment variables to a Singularity container create the variable
with the SINGULARITYENV_ prefix
export SINGULARITYENV_LD_LIBRARY_PATH=$LD_LIBRARY_PATH
print to log file for debug
echo $SINGULARITYENV_LD_LIBRARY_PATH

this simply runs the command 'ldd /myapp/pi' inside the container and should show that
the app is running agains the host machines Cray libmpi.so not the one inside the container
aprun -n 1 -N 1 singularity exec -B /opt:/opt:ro -B /var/opt:/var/opt:ro mpitest.img ldd /myapp/pi
run my contianer like an application, which will run '/myapp/pi'
aprun -n 8 -N 4 singularity run -B /opt:/opt:ro -B /var/opt:/var/opt:ro mpitest.img

-B /opt:/opt:ro causes Singularity to mount the host
‘/opt’ inside the container at ‘/opt’ in read-only (ro) mode.
This allows the use of cray libraries that are needed to
take advantage of Theta’s unique hardware.

Argonne Leadership Computing Facility

1. Create SingularityFile recipe in github
2. Link repo to Singularity Hub
3. Wait for build
4. Build on Theta
5. Run on Theta

Overview of the Workflow in Five Easy Steps!

!48

Container
pi

MPICH

Built on Singularity Hub Container
pi

MPICH

Cray MPICH

Run on Theta

Instructions for building on local machine:
https://www.alcf.anl.gov/user-guides/singularity

Argonne Leadership Computing Facility

• Web Interface to transfer files between Globus
Endpoints (NERSC,ALCF,OLCF,BNL,etc.)

• Login using ANL Credentials or other institutes
• Must authenticate with the myproxy server of

source and destination.

Globus for Data Transfer

!49

https://www.globus.org/app/transfer

Argonne Leadership Computing Facility

• There is also a Python/Java API for doing this

• Example Python implementation

• Provides effective transfer rates at the scale of
300MB/s between large facilities

Globus for Data Transfer

!50

https://docs.globus.org/api/transfer/

https://github.com/globusonline/transfer-api-client-python

from globusonline.transfer import api_client

api = api_client.TransferAPIClient(username="myusername",
 cert_file="/path/to/client/credential",
 key_file="/path/to/client/credential")
status_code, status_message, data = api.task_list()

Argonne Leadership Computing Facility

Theta Nodes RAM-disk (/tmp)

!51

• Processes running on Theta compute nodes have access to /tmp
• This path maps some portion of the 192GB node DDR to a

usable local filesystem
• The benefit is for low-memory applications with intermediate

file-IO for non-persistent data
• Limited to 95GB
• USE WITH CARE: Know how much DDR your application

requires, and do not write so much data to the RAM disk that
your application runs out causing a crash.

Argonne Leadership Computing Facility

Summary

!52

• Data Science Group is working to support Data & Learning software
stacks

• Growing support for distributed learning frameworks
• Intel/Cray support of Tensorflow through custom libraries leading to

scalable Deep Learning on Theta
• Singularity installed for users
• Containers offer portability and easy distribution of software though

come with complications in custom hardware environments
• Globus provides high speed data transfers between supported endpoints

